UNIVERSITY CATALOG: 2024-2025

Courses

CE 101/L. Introduction to Civil Engineering and Lab (1/1)

Freshman orientation course for the Civil Engineering program, the profession and an introduction to the University. Introduction to the tools for civil engineering studies: Internet, word processing and spreadsheets. Development of communication skills and the ability to work in teams. Development of learning skills in civil engineering studies. 1 hour lecture/discussion, 3 hours lab per …

CE 240/L. Engineering Statics and Lab (2/1)

Prerequisites: PHYS 220A and PHYS 220AL. Corequisites: MATH 150B, CE 240L. Analysis of the distribution of forces on and within bodies in static equilibrium. Free body diagrams, equilibrium equations and the method of sections. Includes a limited introduction to the subject of strength of materials. 2 hours lecture, 3 hours lab per week.

CE 280/L. Computer Applications in Civil Engineering and Lab (1/1)

Prerequisite: CE 240. Development of computer skills related to the field of civil engineering. Introduction of Windows, email and Internet usage. Introduction to Office suite, word processing, spreadsheets with VBA applications, presentation and publishing software. Development of programming skills. Application of CAD to the development of structural and architectural drawings, dimensioning, grading plans, contour lines …

CE 308/L. Surveying and Lab (2/1)

Corequisite: CE 308L. Fundamentals of plane and geodetic surveying. Concepts of linear and angular measurements, precision, errors and corrections. Field problems in chaining, differential and profile leveling, triangulation and highway curves. 2 hours lecture, 3 hours lab. (Design units: 0.)

CE 315/L. Construction Engineering and Lab (2/1)

Prerequisites: CE 280/L. Corequisites: CE 308/L and CE 315L. The objective of this course is to introduce undergraduate students to planning, scheduling, estimating, and project-control techniques for construction projects.

CE 335/L. Structures I and Computational Lab (3/1)

Prerequisite: CE 340. Corequisite: CE 335L. Determination of the force distribution and deflections in statically determinant and indeterminant structures using the classical, non-matrix methods of structural analysis. 3 hours of lecture per week. Lab: Structural analysis problem solving session. Computer applications of structural analysis and design. 3 hours of lab per week. (Design units: 0.)

CE 340/L. Strength of Materials and Lab (2/1)

Prerequisites: CE 240/L; MATH 280 or ME 280 or ECE 280. Corequisite: CE 340L. Analysis of the stresses and deflections in members and basic structural systems. Axial, torsional, bending and shear stresses and deflections. Introduction to structural stability. Design of structural components. 2 hours lecture, 3 hours lab per week.

CE 408/L. Surveying with GPS Applications and Lab (1/1)

Prerequisites: CE 308/L. Corequisite: CE 408L. Surveying with Global Positioning Systems (GPS): point positioning, differential positioning, differencing techniques, survey planning, real-time kinematic (RTK) surveys, vertical positioning, random errors and survey specifications, horizontal curves, vertical curves, horizontal control and vertical control. 1 hour lecture, 3 hours lab per week. (Design units: 0.)

CE 426/L. Soil Mechanics and Lab (3/1)

Prerequisite: CE 340. Corequisite: CE 426L. Soil as a foundation for structures and as a material of construction. Lab experiments to be performed to obtain data to determine soil physical properties. 3 hours lecture, 3 hours lab per week. (Design units: 1.)

CE 438. Reinforced Concrete Design (3)

Prerequisite: CE 335. Basic concepts in the design of reinforced concrete structures. Applications to beams, columns, slabs, shear walls, footing and composite construction. (Design units: 3.)

CE 439. Structural Steel Design (3)

Prerequisite: CE 335. Basic concepts in the design of steel structures. Design in steel of tension and compression members, beams, columns, welded and bolted connections; eccentrically loaded and moment resistant joints; plate girders. Introduction to computer aided design (CAD). (Design units: 3.)

CE 460/L. Engineering Hydrology and Lab (2/1)

Prerequisite: ME 390. Corequisite: CE 460L. Surface Hydrology for the design of drainage, flood control, water storage and distribution systems. Topics include hydrologic cycle, meteorology, surface and ground water movement, interrelation between precipitation and runoff, hydrograph analysis, flood routing and risk assessment. Hydrologic model development and analysis using computers emphasized for design of storm drainage …

CE 488A/L. Civil Engineering Senior Design I and Lab (1/1)

Prerequisites: CE 335/L; Senior class standing with senior program on file. Corequisites: CE 488AL; Either CE 438 or CE 439. First semester of a two-semester sequence capstone design experience simulating professional practice in civil engineering. (CE 488A and CE 488B must be completed within the same academic year.) Undertakes the preliminary design of a complex …

CE 488B. Civil Engineering Senior Design II (2)

Prerequisites: CE 488A/L. Corequisites: Second major civil design course, either CE 438, CE 439 or CE 526. Continuation of CE 488A. (CE 488A and CE 488B must be completed within the same academic year.) Final design stage of the project initiated in CE 488A is undertaken, with emphasis on working in project teams. 6 hours …

CE 499A-C. Independent Study (1-3)

Prerequisites: Senior or graduate standing in Civil Engineering with senior or graduate program on file; Written approvals of faculty sponsor and department chair. Admission based on evidence of ability to pursue Independent Study in-depth and approval of a proposal submitted prior to registration in the course. Available for graduate credit. (Design units vary.)

CE 526. Geotechnical Foundation Design (3)

Prerequisite: CE 426. Soil mechanics aspects of foundation design. Shear strength and compressibility of soil. Lateral pressures and retaining structures. Strength and deformation laws for spread footings, piers, piles and caissons. Analysis of mat foundations. Eccentric and inclined foundation loads. (Design units: 1.0.)

CE 536/L. Structures II and Lab (3/1)

Prerequisite: CE 335. Corequisite: CE 536L. Study of structural analysis and design problems using matrix methods. Complete development of the flexibility and stiffness methods of analysis. Computer applications to structural analysis and design. 3 hours lecture, 3 hours lab per week. (Design units: 1.5.)

CE 537. Timber and Masonry Design (4)

Prerequisite: CE 335. Study of vertical and lateral loading on structures. Elements of timber design. Timber beams, tension members, compression members, tension and bending, and compression and bending members. Design of horizontal diaphragms and shearwalls. Design of connections. Elements of masonry design. Design of masonry in bending, shear and axial members. 4 hours of lecture. …

CE 636. Structural Dynamics (3)

Prerequisite: AM 610. Vibration of structural systems with emphasis on approximate solutions to continuous systems; assumed modes, Rayleigh-Ritz, Finite Element Applications and nonlinear vibrations. Numerical techniques for computer application. Response spectra for multi-degree-of-freedom systems. Advanced topics.

CE 638. Advanced Reinforced Concrete Design (3)

Prerequisite: CE 438. Advanced topics in concrete design, including frames and slabs.

CE 639. Advanced Structural Steel Design (3)

Prerequisite: CE 439. Advanced topics in structural steel design, such as frames, bridges and buildings.

CE 640. Advanced Analysis Methods (3)

Prerequisite: CE 536. Analytical methods for calculation of stress deflection and stability of structures. Unsymmetrical bending, torsion, plates, treatment of the buckling characteristics of various structural elements. Applications of energy methods. Fundamentals of applied elasticity. Consideration given to modern structural materials. (Design units: 1.)

CE 641. Earthquake Engineering (3)

Prerequisites: AM 410; CE 335. Study of the earthquake problem. Topics covered include plate tectonics, seismology, dynamic response of structures, dynamics of sites and design for earthquakes.

CE 642/L. Finite Element Analysis and Lab (3/1)

Prerequisites: AM 410; CE 536. Corequisite: CE 642L. Study of structural mechanics problems by use of finite element method. Formulation of the basic elements, assemblage of elements and application of the method to selected topics in structural mechanics.

CE 648. Prestressed Concrete Design (3)

Prerequisite: CE 638. Prestressed concrete design and analysis for gravity and lateral loading. Design of reinforced and prestressed structural elements. Safety and economy. Connection design for earthquake and wind loadings. Design projects using professional practice standards, including latest codes. 3 hours of lecture. (Design units: 3.)

CE 698C. Thesis or Graduate Project (3)

Prerequisites: Advancement to candidacy for the M.S. degree; Written approvals of faculty advisor and department graduate coordinator or department chair.

CE 699C. Independent Study (3)

Prerequisites: Classified status in the M.S. program; Written approvals from faculty sponsor and department graduate coordinator or department chair. Admission is based in part on evidence of the ability to pursue Independent Study or research in-depth and approval of a proposal submitted prior to the time of registration.