Program: B.S., Physics
Physics
Program Description
The B.S. program in Physics is designed for students who desire to (1) pursue a career in physics-related research and development either in industry or government or (2) prepare for graduate work in physics or related subjects. The B.S. program in Physics has two options: Option I—Physics, and Option II—Astrophysics.
Option I is a balanced program in experimental and theoretical physics. This option can be specialized toward applications in engineering or a more mathematical approach to theoretical physics. This is accomplished by the appropriate choice of the elective courses via consultation with the department undergraduate advisor.
Program Requirements
To enroll in the first courses in Mathematics and Chemistry, students must obtain a satisfactory score on the Mathematics Placement Test (MPT) and the Chemistry Placement Test (CPT). Without satisfactory scores, students may be required to take additional courses in preparation for the required courses. The student must complete all courses listed under lower division required courses as well as those listed under one of the two options. In addition, all students are required to take two comprehensive exams—one on general physics upon completion of PHYS 227 or its equivalent and one on advanced physics just before graduation. Finally, students are required to do a senior project in their final year and pass the associated class PHYS 497. The dates of these exams will be posted in the department office. For more information, consult the department undergraduate advisor.
1. Lower Division Required Courses (36 units)
CHEM 101 General Chemistry I (4)
CHEM 101L General Chemistry I Lab (1)
MATH 280 Applied Differential Equations (3)
PHYS 225 Physics I (4)
and PHYS 220AL Mechanics Lab (1)
PHYS 226 Physics II (4)
and PHYS 220BL Electricity and Magnetism Lab (1)
2. Upper Division Required Courses (37 units)
PHYS 301 Analytical Mechanics I (3)
PHYS 311 Electromagnetism I (3)
PHYS 365 Experimental Physics I (2)
PHYS 366 Experimental Physics II (2)
PHYS 375 Quantum Physics I (3)
PHYS 389 Mathematical Methods in Physics I (3)
PHYS 402 Analytical Mechanics II (3)
PHYS 410 Electromagnetism II (3)
PHYS 431 Thermodynamics and Statistical Mechanics (4)
PHYS 451 Quantum Physics II (3)
PHYS 465 Experimental Physics III (2)
PHYS 466 Experimental Physics IV (2)
PHYS 493 Physics and Astronomy Colloquium (1)
PHYS 497 Senior Project (3)
3. Upper Division Electives (6 units)
A minimum of 6 units of upper division electives chosen with the approval of the department undergraduate advisor from the following or other courses, including Mathematics or Engineering, if approved by the department undergraduate advisor:
ASTR 301 Astrophysics II (3)
ASTR 401 The Radiative Universe (3)
PHYS 420 Modern Optics (3)
PHYS 421 Laser Physics (3)
PHYS 470 Introduction to Nuclear and Elementary Particle Physics (3)
PHYS 480 Introduction to Solid State Physics (3)
PHYS 489 Mathematical Methods in Physics II (3)
PHYS 490 Computer Applications in Physics (3)
4. General Education (48 units)
Undergraduate students must complete 48 units of General Education as described in this Catalog.
9 units are satisfied by the following courses in the major: CHEM 101 satisfies B1 Physical Science; CHEM 101L satisfies B3 Science Laboratory Activity; MATH 150A satisfies Basic Skills B4 Mathematics/Quantitative Reasoning; and PHYS 301 satisfies B5 Scientific Inquiry and Quantitative Reasoning.
Total Units in the Major/Option: 79
General Education Units: 39
Additional Units: 2
Total Units Required for the B.S. Degree: 120
Contact
Department of Physics and Astronomy
Chair: Damian J. Christian
Live Oak Hall (LO) 1128
(818) 677-2775
Student Learning Outcomes
1. Physics
Students will be able to:
- Describe natural phenomena in general and in their chosen program option using principles of physics.
2. Scientific Methods
Students will be able to:
- Set up laboratory experiments and collect data from observations and experiments.
- Combine insights and techniques from the various courses in the program (integrate knowledge).
- Derive quantitative predictions from a model through mathematical analysis.
- Analyze data, provide error analysis, and test a model or hypothesis by comparing with data.
- Competently use computer tools, including software programs for data analysis and presentation, numerical analysis and computer simulations.
3. Communication
Students will be able to:
- Convey physical concepts with mathematical expressions (quantitative literacy).
- Clearly communicate physical concepts, findings and interpretations through oral presentations (oral communication).
- Write clear, organized and illustrated technical reports with proper references to previous work in the area (written communication).
- Search for and read scientific literature (information literacy).
4. Responsibility and Ethics
Students will be able to:
- Make unbiased and objective judgments of theories and experiments.
- Maintain integrity in their research and adhere to ethical principles regarding plagiarism, data collection and selective data sampling.
- Give proper attribution.
- Practice lab safety.